
TD 15 : Dérivation Indications
Taux d’accroissement et dérivée

1 ⋆ On pose f : x 7→ |x|3/2.

1) Montrer que f est dérivable à gauche et à droite en
0, et calculer f ′g(0) et f ′d(0).

2) La fonction f est-elle dérivable en 0 ? Si c’est le cas,
préciser f ′(0).

3) Reprendre les questions précédentes avec la fonc-
tion f : x 7→ |x|1/2.

4) Reprendre les questions précédentes avec la fonc-
tion f : x 7→ ⌊x⌋× |x|.

2 ⋆⋆ Déterminer, si elles existent, les limites sui-
vantes :

1) lim
x→0

ex −1
x

2) lim
x→0

sin(πx)
x

3) lim
x→1

lnx
x−1

4) lim
x→0

(ex −1)sinx
x2

5) lim
x→0

ln(3+ x)− ln3
ln(2+ x)− ln2

6) lim
x→0

tan(5x)
sin(2x)

3 ⋆⋆ Soit f la fonction définie par

f (x) =
x

cosx−1

Calculer les limites à gauche et à droite de f en 0. En
déduire que f n’admet pas de limite en 0.

4 ⋆⋆⋆ Étudier la dérivabilité de la fonction f :
R→ R définie par

f (x) =

{
x si x ∈Q
0 si x /∈Q

Montrer que la fonction f est discontinue en tout point
a ̸= 0. Elle ne sera donc pas dérivable en a. Il reste la
dérivabilité en 0.

Les grands théorèmes de la dérivation

5 ⋆⋆ Soit f ,g :
[
a,b

]
→ R dérivables telles que

f (a)= g(a) et f (b)= g(b). Montrer qu’il existe c∈
]
a,b

[
tel que f ′(c) = g′(c).
Remarquer que ( f −g)(a) = 0 et ( f −g)(b) = 0.

6 ⋆⋆ Soit n ∈ N∗ et f : R→ R une fonction déri-
vable qui s’annule en n points (distincts). Montrer que
f ′ s’annule en au moins n−1 points.
Un théorème permet de conclure que si f s’annule en
certains points, f ′ s’annule sur d’autres...

7 ⋆⋆ En utilisant l’inégalité des accroissements
finis, majorer l’erreur commise dans les approximations
suivantes :

√
101 ≈ 10

1
0,992 ≈ 1 cos1 ≈ 1

2

Par exemple, pour la première approximation, il faut
majorer |

√
101−10|.

Pour la première majoration, remarquer qu’il s’agit de
| f (101)− f (100)| avec f : x 7→

√
x.

8 ⋆⋆ Soit I un intervalle de R et f : I → R une
application deux fois dérivable. Soit enfin a,b ∈ I tels
que a < b. Pour tout x ∈ I, on pose

g(x) =
f (a)+ f (x)

2
−
(

f
(

a+ x
2

)
+(x−a)2A

)
avec A une constante réelle.

1) Déterminer une valeur A telle que g(a) = g(b) = 0.
Cette valeur de A sera fixée comme tel dans la suite.

2) Montrer qu’il existe c ∈
]
a,b

[
tel que g′(c) = 0.

3) En appliquant l’égalité des accroissements finis à
f ′ entre deux points bien choisis, en déduire qu’il
existe d ∈

]
a,b

[
tel que :

f (a)+ f (b)
2

= f
(

a+b
2

)
+

(b−a)2

8
f ′′(d)

1) Isoler A dans l’équation g(a) = 0 ou g(b) = 0,
lorsque c’est nécessaire.
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2) Immédiat mais soyez consciencieux malgré tout.

3) En utilisant le fait que g(b) = 0, que doit valoir A
pour que cela fonctionne ? Puis utiliser la question
2.

9 ⋆⋆⋆ Soit f : R→ R une fonction dérivable et
admettant la même limite ℓ ∈ R en +∞ et en −∞. En
considérant la fonction g = f ◦ tan, montrer qu’il existe
c ∈ R tel que f ′(c) = 0.

Prolonger la fonction g par continuité en ±π

2
.

10 ⋆⋆ En appliquant le théorème des accroisse-
ments finis, déterminer

lim
x→+∞

[
(x+1)e

1
x+1 − xe

1
x

]
On est face à une expression de la forme f (x+1)− f (x)
avec f (x) = xe

1
x .

Dérivabilité revisitée

11 ⋆ On pose

f : x 7→ x2 sin
1
x

1) Montrer que f est prolongeable par continuité en
0. On notera encore f ce prolongement. Préciser la
valeur de f (0).

2) Montrer que la fonction f ainsi prolongée est déri-
vable en 0 et donner la valeur de f ′(0).

3) Calculer f ′(x) pour tout x ̸= 0. Est-ce que f est de
classe C 1 ?

4) Est-ce une contradiction avec le théorème de la
limite de la dérivée ?

Repartir de la définition avec le taux d’accroissement.

12 ⋆⋆ Soit f la fonction définie sur
[
− 1,1

]
par

f (x) = arccos
√

1− x2.

1) Montrer que f est dérivable sur
]
− 1,1

[
\ {0} et

calculer f ′(x) pour tout x ∈
]
−1,1

[
\{0}.

2) Étudier la dérivabilité de f en −1, en 1 puis en 0.

Étudier d’abord la dérivabilité sur
]
−1,1

[
, puis en 1 et

en −1 qui sont des points “potentiellement problémati-
ques”.

13 ⋆⋆ Prolonger les fonctions suivantes par conti-
nuité en 0. Puis étudier leur dérivabilité en 0.

f (x) = x ln |x|

g(x) = xx

h(x) = e−1/x2

ϕ(x) =
sin |x|
|x|

On peut utiliser le théorème de la limite de la dérivée,
ou bien la dérivabilité à gauche / à droite. Cette dernière
méthode est parfois plus rapide lorsqu’on veut montrer
qu’il n’y a pas dérivabilité en 0.

14 ⋆⋆ Soit f : x 7→ ch
√

x une fonction définie sur
R+.

1) Montrer que f est de classe C 1.

2) Est-ce que f est de classe C 2 ?

1) C’est un taux d’accroissement.

2) Considérer d’abord R∗
+ (qui est ouvert), puis traiter

le cas 0 par un théorème.

3) Appliquer la même méthode qu’en 2.

Dérivées n-ièmes

15 ⋆⋆ Soit n ∈N. Calculer les dérivées n-ièmes des
fonctions définies par les expressions suivantes :

• f1(x) = (x2 +4x)e3x

• f2(x) =
1

1−2x
• f3(x) = xk avec k ∈N∗

• f4(x) =
1

1− x2

• f5(x) = sin3 x

Pour f4 et f5, on pourra d’abord réécrire ces expressions
comme si on voulait les intégrer.
S’appuyer sur la méthode en dernière page du poly de
cours.

16 ⋆⋆ Soit n ∈ N et f : x 7→ x2n.

1) Calculer de deux façons la dérivée n-ième de f . On
pourra utiliser le fait que x2n = xn × xn.

2) En déduire
n

∑
k=0

(
n
k

)2

.

1) Une façon est de dériver n fois x 7→ x2n directement.
Une autre est d’appliquer la formule de Leibniz car
f = gh avec g(x) = xn et h(x) = xn.
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2) En égalisant les expressions trouvées en question 1,
le résultat arrive rapidement.

17 ⋆⋆⋆ Soit f : x 7→ e−1/x2
.

1) Justifier que f est de classe C ∞ (sur R∗).

2) Montrer que pour tout n ∈N, il existe un polynôme
Pn tel que

∀x ∈ R∗
+ f (n)(x) = Pn

(
1
x

)
e−

1
x2

3) En déduire que f se prolonge en une fonction de
classe C ∞ sur R et donner les valeurs de f (n)(0)
pour tout n ∈ N.

1) C’est immédiat par la phrase magique.

2) Il faut procéder par récurrence. Il n’est pas néces-
saire d’avoir une expression explicite de Pn.

3) C’est un prolongement en un “trou” : calculer la
limite à gauche puis à droite.

18 ⋆⋆⋆ Pour chacune des fonctions suivantes, dé-
terminer sa classe, c’est-à-dire la plus grande valeur de
k ∈ N pour laquelle la fonction est de classe C k.

f (x) = x|x| g(x) =

{
xn si x ≥ 0
0 si x < 0

(avec n ∈ N)

h(x) =

x2 sin
1
x

si x ̸= 0

0 si x = 0

Remarquer que chaque fonction est clairement de
classe C ∞ sur R∗. Il suffit donc de regarder ce qui se
passe en 0.

19 ⋆⋆⋆ Soit P une fonction polynômiale. Mon-
trer que l’équation P(x) = ex n’a qu’un nombre fini de
solutions. Indication : on pourra utiliser le résultat de
l’exercice 6.Supposons par l’absurde qu’il y a une infi-
nité de réels x qui vérifient P(x) = ex. Donc la fonction
f : x 7→ P(x)− ex prend la valeur zéro en une infinité
de points. Donc pour tout n ∈ N il existe (au moins) n
points où f s’annule.
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